Modelling financial time series based on heavy-tailed market microstructure models with scale mixtures of normal distributions
Yanhui Xi and
Hui Peng
International Journal of Systems Science, 2018, vol. 49, issue 8, 1615-1626
Abstract:
This paper presents a type of heavy-tailed market microstructure models with the scale mixtures of normal distributions (MM-SMN), which include two specific sub-classes, viz. the slash and the Student-t distributions. Under a Bayesian perspective, the Markov Chain Monte Carlo (MCMC) method is constructed to estimate all the parameters and latent variables in the proposed MM-SMN models. Two evaluating indices, namely the deviance information criterion (DIC) and the test of white noise hypothesis on the standardised residual, are used to compare the MM-SMN models with the classic normal market microstructure (MM-N) model and the stochastic volatility models with the scale mixtures of normal distributions (SV-SMN). Empirical studies on daily stock return data show that the MM-SMN models can accommodate possible outliers in the observed returns by use of the mixing latent variable. These results also indicate that the heavy-tailed MM-SMN models have better model fitting than the MM-N model, and the market microstructure model with slash distribution (MM-s) has the best model fitting. Finally, the two evaluating indices indicate that the market microstructure models with three different distributions are superior to the corresponding stochastic volatility models.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2018.1464607 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:49:y:2018:i:8:p:1615-1626
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2018.1464607
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().