Adaptive neural output feedback tracking control for a class of nonlinear systems
Yu-Qun Han,
Shan-Liang Zhu,
De-Yu Duan and
Shu-Guo Yang
International Journal of Systems Science, 2019, vol. 50, issue 11, 2088-2101
Abstract:
In this paper, an adaptive neural output feedback control scheme based on backstepping technique and dynamic surface control (DSC) approach is developed to solve the tracking control problem for a class of nonlinear systems with unmeasurable states. Firstly, a nonlinear state observer is designed to estimate the unmeasurable states. Secondly, in the controller design process, radial basis function neural networks (RBFNNs) are utilised to approximate the unknown nonlinear functions, and then a novel adaptive neural output feedback tracking control scheme is developed via backstepping technique and DSC approach. It is shown that the proposed controller ensures that all signals of the closed-loop system remain bounded and the tracking error converges to a small neighbourhood around the origin. Finally, two numerical examples and one realistic example are given to illustrate the effectiveness of the proposed design approach.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2019.1645918 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:50:y:2019:i:11:p:2088-2101
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2019.1645918
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().