Robust adaptive fault-tolerant control for time delay uncertain nonlinear systems with time-varying performance bounds
Shuyi Xiao and
Jiuxiang Dong
International Journal of Systems Science, 2019, vol. 50, issue 11, 2168-2188
Abstract:
In this paper, a robust adaptive fault tolerant controller guaranteeing with time-varying performance bounds is designed for a class of time delay uncertain nonlinear systems subject to actuator failures and external disturbance. The influence of time delay on the system is mitigated and the system performance can be guaranteed by introducing a positive nonlinear control gain function and the generalised restricted potential function. A new method with more design degrees of freedom is developed to ensure the norm of the system state within a-priori, user-defined time varying performance bounds. Using the online estimation information provided by adaptive mechanism, a robust adaptive fault-tolerant control method guaranteeing time varying performance bounds is proposed. It is shown that all the signals of the resulting closed-loop system are bounded and the system state less than a-priori, user-defined performance bounds. Finally, simulation results are given to demonstrate the efficacy of the proposed fault-tolerant control method.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2019.1647307 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:50:y:2019:i:11:p:2168-2188
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2019.1647307
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().