Information fusion robust guaranteed cost Kalman estimators with uncertain noise variances and missing measurements
Ying Zhao and
Chunshan Yang
International Journal of Systems Science, 2019, vol. 50, issue 15, 2853-2869
Abstract:
For multisensor systems with uncertain noise variances and missing measurements, it can be converted into one only with uncertain noise variances by introducing fictitious measurement white noises. According to the minimax robust estimation principle and parameterisation representation of perturbances of uncertain noise variances, based on the worst-case system with conservative upper bounds of uncertain noise variances, the two classes of guaranteed cost robust weighted fusion Kalman estimators with matrix weights, diagonal matrix weights, scalar weights, and covariance intersection fusion matrix weights are presented. One class is the construction of a maximal perturbance region of uncertain noise variances, in which for all admissible perturbances, the accuracy deviations are guaranteed to remain within the prescribed range. The other class is the finding of minimal upper bound and maximal lower bound of accuracy deviations over the given perturbance region of uncertain noise variances. Two problems can be converted into the optimisation problems with constraints. Their optimal analytical solutions can simply be found respectively by the Lagrange multiplier method and the linear programme method. The guaranteed cost robustness is proved by the Lyapunov equation approach. A simulation example applied to the mass-spring system is provided to demonstrate the correctness and effectiveness of the proposed results.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2019.1690719 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:50:y:2019:i:15:p:2853-2869
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2019.1690719
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().