EconPapers    
Economics at your fingertips  
 

An improved adaptive online neural control for robot manipulator systems using integral Barrier Lyapunov functions

Jun Xia, Yujia Zhang, Chenguang Yang, Min Wang and Andy Annamalai

International Journal of Systems Science, 2019, vol. 50, issue 3, 638-651

Abstract: Conventional Neural Network (NN) control for robots uses radial basis function (RBF) and for n-link robot with online control, the number of nodes and weighting matrix increases exponentially, which requires a number of calculations to be performed within a very short duration of time. This consumes a large amount of computational memory and may subsequently result in system failure. To avoid this problem, this paper proposes an innovative NN robot control using a dimension compressed RBF (DCRBF) for a class of n-degree of freedom (DOF) robot with full-state constraints. The proposed DCRBF NN control scheme can compress the nodes and weighting matrix greatly and provide an output that meets the prescribed tracking performance. Additionally, adaption laws are designed to compensate for the internal and external uncertainties. Finally, the effectiveness of the proposed method has been verified by simulations. The results indicate that the proposed method, integral Barrier Lyapunov Functions (iBLF), avoids the existing defects of Barrier Lyapunov Functions (BLF) and prevents the constraint violations.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2019.1567863 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:50:y:2019:i:3:p:638-651

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2019.1567863

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:50:y:2019:i:3:p:638-651