EconPapers    
Economics at your fingertips  
 

Data-driven adaptive dynamic programming for partially observable nonzero-sum games via Q-learning method

Wei Wang, Xin Chen, Hao Fu and Min Wu

International Journal of Systems Science, 2019, vol. 50, issue 7, 1338-1352

Abstract: This paper concerns with a class of discrete-time linear nonzero-sum games with the partially observable system state. As is known, the optimal control policy for the nonzero-sum games relies on the full state measurement which is hard to fulfil in partially observable environment. Moreover, to achieve the optimal control, one needs to know the accurate system model. To overcome these deficiencies, this paper develops a data-driven adaptive dynamic programming method via Q-learning method using measurable input/output data without any system knowledge. First, the representation of the unmeasurable inner system state is built using historical input/output data. Then, based on the representation state, a Q-function-based policy iteration approach with convergence analysis is introduced to approximate the optimal control policy iteratively. A neural network (NN)-based actor-critic framework is applied to implement the developed data-driven approach. Finally, two simulation examples are provided to demonstrate the effectiveness of the developed approach.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2019.1599463 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:50:y:2019:i:7:p:1338-1352

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2019.1599463

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:50:y:2019:i:7:p:1338-1352