Multiple model-based event-triggered adaptive control of a class of discrete-time nonlinear systems
Miao Huang,
Xin Wang,
Zhe-Ming Lu,
Long-Hua Ma,
Ming Xu and
Hong-Ye Su
International Journal of Systems Science, 2019, vol. 50, issue 7, 1353-1367
Abstract:
In this study, the problem of event-triggered-based adaptive control (ETAC) for a class of discrete-time nonlinear systems with unknown parameters and nonlinear uncertainties is considered. Both neural network (NN) based and linear identifiers are used to approximate the unknown system dynamics. The feedback output signals are transmitted, and the parameters and the NN weights of the identifiers are tuned in an aperiodic manner at the event sample instants. A switching mechanism is provided to evaluate the approximate performance of each identifier and decide which estimated output is utilised for the event-triggered controller design, during any two events. The linear identifier with an auxiliary output and an improved adaptive law is introduced so that the nonlinear uncertainties are no longer assumed to be Lipschitz. The number of transmission times are significantly reduced by incorporating multiple model schemes into ETAC. The boundedness of both the parameters of identifiers and the system outputs is demonstrated though the Lyapunov approach. Simulation results demonstrate the effectiveness of the proposed method.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2019.1615569 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:50:y:2019:i:7:p:1353-1367
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2019.1615569
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().