Time-varying multi-objective optimisation over switching graphs via fixed-time consensus algorithms
Zhongguo Li and
Zhengtao Ding
International Journal of Systems Science, 2020, vol. 51, issue 15, 2793-2806
Abstract:
This paper considers distributed multi-objective optimisation problems with time-varying cost functions for network-connected multi-agent systems over switching graphs. The scalarisation approach is used to convert the problem into a weighted-sum objective. Fixed-time consensus algorithms are developed for each agent to estimate the global variables and drive all local copies of the decision vector to a consensus. The algorithm with fixed gains is first proposed, where some global information is required to choose the gains. Then, an adaptive algorithm is presented to eliminate the use of global information. The convergence of those algorithms to the Pareto solutions is established via Lyapunov theory for connected graphs. In the case of disconnected graphs, the convergence to the subsets of the Pareto fronts is studied. Simulation results are provided to demonstrate the effectiveness of the proposed algorithms.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2020.1801885 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:51:y:2020:i:15:p:2793-2806
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2020.1801885
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().