EconPapers    
Economics at your fingertips  
 

Sampled-data state-estimation of delayed complex-valued neural networks

Nallappan Gunasekaran and Guisheng Zhai

International Journal of Systems Science, 2020, vol. 51, issue 2, 303-312

Abstract: This paper studies the sampled-data state-estimation problem of delayed complex-valued neural networks (CVNNs). By using Lyapunov–Krasovskii functional (LKF), standard integral inequality together with the reciprocal convex approach, a delay-dependent condition is established in terms of the solution to linear matrix inequalities (LMIs) such that the consider CVNNs is asymptotically stable. As a result, an estimator gain matrix can be obtained through sampling instant. Finally, a simulation example is given to illustrate the theoretical analysis.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2019.1704095 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:51:y:2020:i:2:p:303-312

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2019.1704095

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:51:y:2020:i:2:p:303-312