Sampled-data repetitive control for a class of non-minimum phase nonlinear systems subject to period variation
Quan Quan and
Kai-Yuan Cai
International Journal of Systems Science, 2020, vol. 51, issue 4, 704-718
Abstract:
The robust sampled-data repetitive control (RC, or repetitive controller, also designated RC) problem for non-minimum phase nonlinear systems is both challenging and practical. This paper proposes a sampled-data output-feedback RC design for a class of non-minimum phase systems with measurable nonlinearities to improve the robustness against the period variation. The design relies on additive-state decomposition, by which the output-feedback RC problem is decomposed into an output-feedback RC problem for a linear time-invariant component and a state-feedback stabilisation problem for a nonlinear component. Thanks to the decomposition, existing controller design methods in both the frequency domain and the time domain are employed to make the robustness and discretisation for a continuous-time nonlinear system tractable. In order to demonstrate the effectiveness, an illustrative example is given.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2020.1737755 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:51:y:2020:i:4:p:704-718
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2020.1737755
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().