Neural congestion prediction system for trip modelling in heterogeneous spatio-temporal patterns
Wiam Elleuch,
Ali Wali and
Adel M. Alimi
International Journal of Systems Science, 2020, vol. 51, issue 8, 1373-1391
Abstract:
Until recently, urban cities have faced an increasing demand for an efficient system able to help drivers to discover the congested roads and avoid the long queues. In this paper, an Intelligent Traffic Congestion Prediction System (ITCPS) was developed to predict traffic congestion states in roads. The system embeds a Neural Network architecture able to handle the variation of traffic changes. It takes into account various traffic patterns in urban regions as well as highways during workdays and free-days. The developed system provides drivers with the fastest path and the estimated travel time to reach their destination. The performance of the developed system was tested using a big and real-world Global Positioning System (GPS) database gathered from vehicles circulating in Sfax city urban areas, Tunisia as well as the highways linking Sfax and other Tunisian cities. The results of congestion and travel time prediction provided by our system show promise when compared to other non-parametric techniques. Moreover, our model performs well even in cross-regions whose data were not used during training phase.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2020.1760957 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:51:y:2020:i:8:p:1373-1391
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2020.1760957
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().