Model-based recurrent neural network for redundancy resolution of manipulator with remote centre of motion constraints
Zhan Li and
Shuai Li
International Journal of Systems Science, 2022, vol. 53, issue 14, 3056-3069
Abstract:
Redundancy resolution is a critical issue to achieve accurate kinematic control for manipulators. End-effectors of manipulators can track desired paths well with suitable resolved joint variables. In some manipulation applications such as selecting insertion paths to thrill through a set of points, it requires the distal link of a manipulator to translate along such fixed point and then perform manipulation tasks. The point is known as remote centre of motion (RCM) to constrain motion planning and kinematic control of manipulators. Together with its end-effector finishing path tracking tasks, the redundancy resolution of a manipulators has to maintain RCM to produce reliable resolved joint angles. However, current existing redundancy resolution schemes on manipulators based on recurrent neural networks (RNNs) mainly are focusing on unrestricted motion without RCM constraints considered. In this paper, an RNN-based approach is proposed to solve the redundancy resolution issue with RCM constraints, developing a new general dynamic optimisation formulation containing the RCM constraints. Theoretical analysis shows the theoretical derivation and convergence of the proposed RNN for redundancy resolution of manipulators with RCM constraints. Simulation results further demonstrate the efficiency of the proposed method in end-effector path tracking control under RCM constraints based on an industrial redundant manipulator system.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2022.2070790 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:53:y:2022:i:14:p:3056-3069
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2022.2070790
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().