High-performance LQR control for continuous time systems with redundant control inputs
Jianzhou Liu,
Fuying Tang and
Hongzheng Quan
International Journal of Systems Science, 2024, vol. 55, issue 5, 909-925
Abstract:
This paper investigates the linear quadratic regulator (LQR) problem for continuous-time linear systems with redundant control inputs. The LQR control problem has been widely studied, but due to technical difficulties, there is little advance in the study of adding input redundancies. To address this problem, a convergent matrix series, the limit of a monotonically decreasing sequence, is first presented as an upper bound of the symmetric positive definite solution of a class of continuous algebraic Riccati equations (CAREs). Compared with the existing studies on this topic, the obtained bounds are more precise. Moreover, by utilising these upper bounds in the LQR problem of adding input redundancies, a class of sufficient conditions is presented to decrease the quadratic performance index. Finally, the corresponding numerical examples are given to illustrate the effectiveness of our results and compare them with the existing results. Meanwhile, some simulation experiments show that systems with redundant control inputs have good control performance.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2023.2300724 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:55:y:2024:i:5:p:909-925
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2023.2300724
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().