Improved stability and stabilisation conditions of uncertain switched time-delay systems
Cai Liu,
Fang Liu,
Tianqing Yang and
Kangzhi Liu
International Journal of Systems Science, 2024, vol. 55, issue 6, 1073-1088
Abstract:
This article is concerned with the stability and stabilisation of switched time-delay systems (STDSs) with exponential uncertainty. Based on the Hurwitz convex combination and the energy attenuation principle, an improved state-dependent switching strategy is proposed, which switches to the next modes to obey the minimum energy. This approach fully considers the system dynamic of subsystems, which is more general. Considering the complex switching and delay dynamics, a mode-dependent Lyapunov–Krasovskii functional (LKF) that contains a triple integral term is constructed. The generalised free-matrix-based integral inequality (GFMBII) is used to estimate the integral terms in the derivative of the LKF, and an improved delay-dependent stability criterion is established in the form of linear matrix inequalities (LMIs). Further, to guarantee the stability of the STDSs with a large time-varying delay, a controller that considers the time delay and the exponential uncertainty is designed. Under this controller, a less conservative delay-dependent robust stabilisation criterion for STDSs with exponential uncertainty is established. The validity of the proposed methods is validated by two numerical examples and an application in river pollution control.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2023.2268779 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:55:y:2024:i:6:p:1073-1088
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2023.2268779
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().