BOMO-RNN: a novel neural network controller for industrial robots with experimental validation
Ameer Hamza Khan,
Hang Su,
Xinwei Cao,
Duc Truong Pham,
Ze Ji,
Michael Packianather and
Shuai Li
International Journal of Systems Science, 2025, vol. 56, issue 16, 4170-4186
Abstract:
This paper introduces the Beetle Olfactory-based Manipulability Optimizer Recurrent Neural Network (BOMO-RNN), an advanced RNN-based controller designed to enhance the manipulability of redundantly actuated industrial robotic arms. The manipulability index, which quantifies the maneuverability of the robotic arm, is crucial for avoiding kinematic singularities that restrict the mobility of robotic arm in the task space. The proposed approach formulates an optimisation problem using the penalty method to incorporate the manipulability index into the tracking control objective function. Unlike conventional approaches that rely on velocity-level control and require precise initialisation, BOMO-RNN operates at the position level, allowing direct trajectory tracking from arbitrary starting configurations, thereby increasing flexibility and ease of deployment. This function aims to maximise maneuverability while ensuring accurate tracking of the reference trajectory, effectively avoiding joint-space singularities. The BOMO-RNN framework leverages a metaheuristic optimisation strategy, enabling efficient exploration of high-dimensional search spaces without requiring explicit Jacobian pseudo-inversion, significantly reducing computational overhead and improving numerical stability. The BOMO-RNN algorithm efficiently addresses the time-varying optimisation problem at the position level, eliminating the need for computationally intensive Jacobian pseudo-inversion. This ensures robustness in real-world scenarios where high-speed control and adaptability to dynamic environments are critical. The algorithm's convergence is theoretically analysed, and its performance is validated through numerical simulations and experimental results using the LBR IIWA 7-DOF robot. Extensive experimental verification demonstrates the effectiveness of BOMO-RNN across diverse trajectory patterns, including circular, sinusoidal, and piecewise straight-line motions, confirming its generalizability and practical applicability. The results demonstrate BOMO-RNN's practical effectiveness in optimising manipulability and its potential for real-world robotic applications.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2025.2482871 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:56:y:2025:i:16:p:4170-4186
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2025.2482871
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().