Estimation of the mean and variance response surfaces when the means and variances of the noise variables are unknown
Matthias Tan and
Szu Ng
IISE Transactions, 2009, vol. 41, issue 11, 942-956
Abstract:
The means and variances of noise variables are typically assumed known in the design and analysis of robust design experiments. However, these parameters are often not known with certainty and estimated with field data. Standard experimentation and optimization conducted with the estimated parameters can lead to results that are far from optimal due to variability in the data. In this paper, the estimation of the mean and variance response surfaces are considered using a combined array experiment in which estimates of the means and variances of the noise variables are obtained from random samples. The effects of random sampling error on the estimated mean and variance models are studied and a method to guide the design of the sampling effort and experiment to improve the estimation of the models is proposed. Mathematical programs are formulated to find the sample sizes for the noise variables and number of factorial, axial and center point replicates for a mixed resolution design that minimize the average variances of the estimators for the mean and variance models. Furthermore, an algorithm is proposed to find the optimal design and sample sizes given a candidate set of design points.[Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for the following free supplemental resource: Appendix]
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07408170902735418 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:41:y:2009:i:11:p:942-956
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/07408170902735418
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().