Quality-assured setup planning based on the stream-of-variation model for multi-stage machining processes
Jian Liu,
Jianjun Shi and
S. Hu
IISE Transactions, 2009, vol. 41, issue 4, 323-334
Abstract:
Setup planning is a set of activities used to arrange manufacturing features into an appropriate sequence for processing. It has significant impact on the product quality, which is often measured in terms of dimensional variation in key product characteristics. Current approaches to setup planning are experience-based and tend to be conservative due to the selection of unnecessarily precise machines and fixtures to ensure final product quality. This is especially true in multi-stage machining processes (MMPs) since it is difficult to predict variation propagation and its impact on the quality of the final product. In this paper, a methodology is proposed to realize cost-effective, quality-assured setup planning for MMPs. Setup planning is formulated as an optimization problem based on quantitative evaluation of variation propagations. The optimal setup plan minimizes the cost related to process precision and satisfies the quality specifications. The proposed approach can significantly improve the effectiveness as well as the efficiency of the setup planning for MMPs.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/07408170802108526 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:41:y:2009:i:4:p:323-334
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/07408170802108526
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().