Bayesian hierarchical model for combining misaligned two-resolution metrology data
Haifeng Xia,
Yu Ding and
Bani Mallick
IISE Transactions, 2011, vol. 43, issue 4, 242-258
Abstract:
This article presents a Bayesian hierarchical model to combine misaligned two-resolution metrology data for inspecting the geometric quality of manufactured parts. High-resolution data points are scarce and scatter over the surface being measured, while low-resolution data are pervasive but less accurate and less precise. Combining the two datasets should produce better predictions than using a single dataset. One challenge in combining them is the misalignment existing between data from different resolutions. This article attempts to address this issue and make improved predictions. The proposed method improves on the methods of using a single dataset or a combined prediction that does not address the misalignment problem. Improvements of 24% to 74% are demonstrated both for simulated data of circles and datasets obtained for a milled sinewave surface measured by two coordinate measuring machines of different resolutions.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2010.521804 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:43:y:2011:i:4:p:242-258
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2010.521804
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().