A multistage, semi-automated procedure for analyzing the morphology of nanoparticles
Chiwoo Park,
Jianhua Huang,
David Huitink,
Subrata Kundu,
Bani Mallick,
Hong Liang and
Yu Ding
IISE Transactions, 2012, vol. 44, issue 7, 507-522
Abstract:
This article presents a multistage, semi-automated procedure that can expedite the morphology analysis of nanoparticles. Material scientists have long conjectured that the morphology of nanoparticles has a profound impact on the properties of the hosting material, but a bottleneck is the lack of a reliable and automated morphology analysis of the particles based on their image measurements. This article attempts to fill in this critical void. One particular challenge in nanomorphology analysis is how to analyze the overlapped nanoparticles, a problem not well addressed by the existing methods but effectively tackled by the method proposed in this article. This method entails multiple stages of operations, executed sequentially, and is considered semi-automated due to the inclusion of a semi-supervised clustering step. The proposed method is applied to several images of nanoparticles, producing the needed statistical characterization of their morphology.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2011.587867 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:44:y:2012:i:7:p:507-522
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2011.587867
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().