Robust parameter design for multiple-stage nanomanufacturing
Chumpol Yuangyai,
Harriet Nembhard,
Gregory Hayes and
James Adair
IISE Transactions, 2012, vol. 44, issue 7, 580-589
Abstract:
Process reproducibility is a major concern for scientists and engineers, especially when new processes or new products are transitioned from laboratory-scale to full-scale manufacturing. Robust Parameter Design (RPD) is often used to mitigate this problem. However, in multiple-stage manufacturing process environments, it is difficult to employ the RPD concept because experiments cannot strictly follow the principle of complete randomization. Furthermore, the stages can be located at different sites, leading to multiple sets of noise factors. In the existing literature, only a single set of noise factors is considered. Therefore, in this research, the foundation of using the RPD concept with multistage experiments is developed and discussed. Some optimal design catalogs are provided based on a modified minimum aberration criterion. The context for this work is the development of a medical device made of nanoscale composites using a multiple-stage manufacturing process.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2011.635176 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:44:y:2012:i:7:p:580-589
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2011.635176
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().