Optimal design of the synthetic chart for the process mean based on median run length
Michael Khoo,
V. Wong,
Zhang Wu and
Philippe Castagliola
IISE Transactions, 2012, vol. 44, issue 9, 765-779
Abstract:
Control charts are usually designed using average run length as the criterion to be optimized. The shape of the run length distribution changes according to the shift in the mean, from highly skewed for an in-control process to approximately symmetric when the mean shift is large. Since the shape of the run length distribution changes with the mean shift, the Median Run Length (MRL) provides a more meaningful interpretation for in-control and out-of-control performances of the charts, and it is readily understood by practitioners. This article presents an optimal design procedure for a synthetic chart able to monitor the mean based on the MRL under the zero- and steady-state modes. The synthetic chart integrates and conforming run length charts. Pseudocodes and Mathematica programs are presented for the computation of the optimal parameters of the synthetic chart based on a desired in-control MRL (MRL(0)), a given sample size, and a specified mean shift for which a quick detection is needed. [Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for additional example, additional performance study, proof, tables, and figures.]
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2011.609526 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:44:y:2012:i:9:p:765-779
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2011.609526
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().