Simulation-based optimization over discrete sets with noisy constraints
Yao Luo and
Eunji Lim
IISE Transactions, 2013, vol. 45, issue 7, 699-715
Abstract:
This article considers a constrained optimization problem over a discrete set where noise-corrupted observations of the objective and constraints are available. The problem is challenging because the feasibility of a solution cannot be known for certain, due to the noisy measurements of the constraints. To tackle this issue, a method is proposed that converts constrained optimization into the unconstrained optimization problem of finding a saddle point of the Lagrangian. The method applies stochastic approximation to the Lagrangian in search of the saddle point. The proposed method is shown to converge, under suitable conditions, to the optimal solution almost surely as the number of iterations grows. The effectiveness of the proposed method is demonstrated numerically in three settings: (i) inventory control in a periodic review system; (ii) staffing in a call center; and (iii) staffing in an emergency room.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2012.733580 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:45:y:2013:i:7:p:699-715
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2012.733580
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().