The sequential stochastic assignment problem with random success rates
Arash Khatibi,
Golshid Baharian,
Estelle R. Kone and
Sheldon H. Jacobson
IISE Transactions, 2014, vol. 46, issue 11, 1169-1180
Abstract:
Given a finite number of workers with constant success rates, the Sequential Stochastic Assignment problem (SSAP) assigns the workers to sequentially arriving tasks with independent and identically distributed reward values, so as to maximize the total expected reward. This article studies the SSAP, with some (or all) workers having random success rates that are assumed to be independent but not necessarily identically distributed. Several assignment policies are proposed to address different levels of uncertainty in the success rates. Specifically, if the probability density functions of the random success rates are known, an optimal mixed policy is provided. If only the expected values of these rates are known, an optimal expectation policy is derived.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2014.882530 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:46:y:2014:i:11:p:1169-1180
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2014.882530
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().