EconPapers    
Economics at your fingertips  
 

Multiple data sources fusion for enterprise quality improvement by a multilevel latent response model

Shuai Huang, Jing Li, Gerri Lamb, Madeline Schmitt and John Fowler

IISE Transactions, 2014, vol. 46, issue 5, 512-525

Abstract: Quality improvement of an enterprise needs a model to link multiple data sources, including the independent and interdependent activities of individuals in the enterprise, enterprise infrastructure, climate, and administration strategies, as well as the quality outcomes of the enterprise. This is a challenging problem because the data are at two levels—i.e., the individual and enterprise levels—and each individual's contribution to the enterprise quality outcome is usually not explicitly known. These challenges make general regression analysis and conventional multilevel models non-applicable to the problem. This article a new multilevel model that treats each individual's contribution to the enterprise quality outcome as a latent variable. Under this new formulation, an algorithm is developed to estimate the model parameters, which integrates the Fisher scoring algorithm and generalized least squares estimation. Extensive simulation studies are performed that demonstrate the superiority of the proposed model over the competing approach in terms of the statistical properties in parameter estimation. The proposed model is applied to a real-world application of nursing quality improvement and helps identify key nursing activities and unit (a hospital unit is an enterprise in this context) quality-improving measures that help reduce patient falls.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2013.849829 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:46:y:2014:i:5:p:512-525

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/0740817X.2013.849829

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:46:y:2014:i:5:p:512-525