Monte Carlo study of the molecular beam epitaxy process for manufacturing magnesium oxide nano-scale films
Ghulam Moeen Uddin,
Katherine S. Ziemer,
Abe Zeid and
Sagar Kamarthi
IISE Transactions, 2015, vol. 47, issue 2, 125-140
Abstract:
This article presents a Monte Carlo-based factor-wise sensitivity analysis conducted on the performance variables of a Molecular Beam Epitaxy (MBE) process. Using lab-scale MBE equipment, magnesium oxide (MgO 111) films are grown on a hexagonal silicon carbide 6H-SiC (0001) substrate. The thin film surface chemistry in terms of O‒Mg and OH‒Mg bonding states is examined using X-ray photoelectron spectroscopy. A multi-layer perceptron is used to model the process. Monte Carlo experiments are conducted on the process model to study the causal relationship between the critical process control variables and the key performance indicators. The sensitivity of O‒Mg and OH‒Mg bonding states in MgO films to each of the four process control variables (growth time, substrate temperature, magnesium source temperature, and percentage starting oxygen) is examined. Each control variable is varied individually while keeping other control variables constant at their mid values in one case and randomly varying in another case. The sensitivity of the performance variables to the interaction between a select set of control variable pairs is also examined. The interaction between substrate temperature and oxygen on the starting surface is found to significantly affect the dynamics of OH‒Mg bonding state.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2014.905732 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:47:y:2015:i:2:p:125-140
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2014.905732
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().