Computationally efficient optimization of stock pooling and allocation levels for two-demand-classes under general lead time distributions
Oguzhan Vicil and
Peter Jackson
IISE Transactions, 2016, vol. 48, issue 10, 955-974
Abstract:
In this article we develop a procedure for estimating service levels (fill rates) and for optimizing stock and threshold levels in a two-demand-class model managed based on a lot-for-lot replenishment policy and a static threshold allocation policy. We assume that the priority demand classes exhibit mutually independent, stationary, Poisson demand processes and non-zero order lead times that are independent and identically distributed. A key feature of the optimization routine is that it requires computation of the stationary distribution only once. There are two approaches extant in the literature for estimating the stationary distribution of the stock level process: a so-called single-cycle approach and an embedded Markov chain approach. Both approaches rely on constant lead times. We propose a third approach based on a Continuous-Time Markov Chain (CTMC) approach, solving it exactly for the case of exponentially distributed lead times. We prove that if the independence assumption of the embedded Markov chain approach is true, then the CTMC approach is exact for general lead time distributions as well. We evaluate all three approaches for a spectrum of lead time distributions and conclude that, although the independence assumption does not hold, both the CTMC and embedded Markov chain approaches perform well, dominating the single-cycle approach. The advantages of the CTMC approach are that it is several orders of magnitude less computationally complex than the embedded Markov chain approach and it can be extended in a straightforward fashion to three demand classes.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2016.1146421 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:48:y:2016:i:10:p:955-974
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2016.1146421
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().