Efficient computation of the likelihood expansions for diffusion models
Chenxu Li,
Yu An,
Dachuan Chen,
Qi Lin and
Nian Si
IISE Transactions, 2016, vol. 48, issue 12, 1156-1171
Abstract:
Closed-form likelihood expansion is an important method for econometric assessment of continuous-time models driven by stochastic differential equations based on discretely sampled data. However, practical applications for sophisticated models usually involve significant computational efforts in calculating high-order expansion terms in order to obtain the desirable level of accuracy. We provide new and efficient algorithms for symbolically implementing the closed-form expansion of the transition density. First, combinatorial analysis leads to an alternative expression of the closed-form formula for assembling expansion terms from that currently available in the literature. Second, as the most challenging task and central building block for constructing the expansions, a novel analytical formula for calculating the conditional expectation of iterated Stratonovich integrals is proposed and a new algorithm for converting the conditional expectation of the multiplication of iterated Stratonovich integrals to a linear combination of conditional expectation of iterated Stratonovich integrals is developed. In addition to a procedure for creating expansions for a nonaffine exponential Ornstein–Uhlenbeck stochastic volatility model, we illustrate the computational performance of our method.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2016.1200201 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:48:y:2016:i:12:p:1156-1171
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2016.1200201
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().