Robust dual-response optimization
İhsan Yanıkoğlu,
Dick den Hertog and
Jack Kleijnen ()
IISE Transactions, 2016, vol. 48, issue 3, 298-312
Abstract:
This article presents a robust optimization reformulation of the dual-response problem developed in response surface methodology. The dual-response approach fits separate models for the mean and the variance and analyzes these two models in a mathematical optimization setting. We use metamodels estimated from experiments with both controllable and environmental inputs. These experiments may be performed with either real or simulated systems; we focus on simulation experiments. For the environmental inputs, classic approaches assume known means, variances, or covariances and sometimes even a known distribution. We, however, develop a method that uses only experimental data, so it does not need a known probability distribution. Moreover, our approach yields a solution that is robust against the ambiguity in the probability distribution. We also propose an adjustable robust optimization method that enables adjusting the values of the controllable factors after observing the values of the environmental factors. We illustrate our novel methods through several numerical examples, which demonstrate their effectiveness.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2015.1067737 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:48:y:2016:i:3:p:298-312
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2015.1067737
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().