A Bayesian variable selection method for joint diagnosis of manufacturing process and sensor faults
Shan Li and
Yong Chen
IISE Transactions, 2016, vol. 48, issue 4, 313-323
Abstract:
This article presents a Bayesian variable selection–based diagnosis approach to simultaneously identify both process mean shift faults and sensor mean shift faults in manufacturing processes. The proposed method directly models the probability of fault occurrence and can easily incorporate prior knowledge on the probability of a fault occurrence. Important concepts are introduced to understand the diagnosability of the proposed method. A guideline on how to select the values of hyper-parameters is given. A conditional maximum likelihood method is proposed as an alternative method to provide robustness to the selection of some key model parameters. Systematic simulation studies are used to provide insights on the relationship between the success of the diagnosis method and related system structure characteristics. A real assembly example is used to demonstrate the effectiveness of the proposed diagnosis method.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2015.1109739 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:48:y:2016:i:4:p:313-323
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2015.1109739
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().