Online detection of steady-state operation using a multiple-change-point model and exact Bayesian inference
Jianguo Wu,
Yong Chen and
Shiyu Zhou
IISE Transactions, 2016, vol. 48, issue 7, 599-613
Abstract:
The detection of steady-state operation is critical in system/process performance assessment, optimization, fault detection, and process automation and control. In this article, we propose a new robust and computationally efficient online steady-state detection method using multiple change-point models and exact Bayesian inference. An average run length approximation is derived that can provide insight and guidance in the application of the proposed algorithm. An extensive numerical analysis shows that the proposed method is much more accurate and robust than currently available methods.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2015.1110268 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:48:y:2016:i:7:p:599-613
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2015.1110268
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().