Nonparametric dynamic screening system for monitoring correlated longitudinal data
Jun Li and
Peihua Qiu
IISE Transactions, 2016, vol. 48, issue 8, 772-786
Abstract:
In many applications, including the early detection and prevention of diseases and performance evaluation of airplanes and other durable products, we need to sequentially monitor the longitudinal pattern of certain performance variables of a subject. A signal should be given as soon as possible after the pattern has become abnormal. Recently, a new statistical method, called a dynamic screening system (DySS), was proposed to solve this problem. It is a combination of longitudinal data analysis and statistical process control. However, the current DySS method can only handle cases where the observations are normally distributed and within-subject observations are independent or follow a specific time series model (e.g., AR(1) model). In this article, we propose a new nonparametric DySS method that can handle cases where the observation distribution and the correlation among within-subject observations are arbitrary. Therefore, it significantly broadens the application area of the DySS method. Numerical studies show that the new method works well in practice.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2016.1146423 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:48:y:2016:i:8:p:772-786
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2016.1146423
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().