EconPapers    
Economics at your fingertips  
 

Logistic regression for crystal growth process modeling through hierarchical nonnegative garrote-based variable selection

Hongyue Sun, Xinwei Deng, Kaibo Wang and Ran Jin

IISE Transactions, 2016, vol. 48, issue 8, 787-796

Abstract: Single-crystal silicon ingots are produced from a complex crystal growth process. Such a process is sensitive to subtle process condition changes, which may easily become failed and lead to the growth of a polycrystalline ingot instead of the desired monocrystalline ingot. Therefore, it is important to model this polycrystalline defect in the crystal growth process and identify key process variables and their features. However, to model the crystal growth process poses great challenges due to complicated engineering mechanisms and a large amount of functional process variables. In this article, we focus on modeling the relationship between a binary quality indicator for polycrystalline defect and functional process variables. We propose a logistic regression model with hierarchical nonnegative garrote-based variable selection method that can accurately estimate the model, identify key process variables, and capture important features. Simulations and a case study are conducted to illustrate the merits of the proposed method in prediction and variable selection.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2016.1167286 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:48:y:2016:i:8:p:787-796

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/0740817X.2016.1167286

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:48:y:2016:i:8:p:787-796