Risk-averse stochastic unit commitment with incomplete information
Ruiwei Jiang,
Yongpei Guan and
Jean-Paul Watson
IISE Transactions, 2016, vol. 48, issue 9, 838-854
Abstract:
Due to the sustainable nature and stimulus plans from government, renewable energy (such as wind and solar) has been increasingly used in power systems. However, the intermittency of renewable energy creates challenges for power system operators to keep the systems reliable and cost-effective. In addition, information about renewable energy is usually incomplete. Instead of knowing the true probability distribution of the renewable energy course, only a set of historical data samples can be collected from the true (while ambiguous) distribution. In this article, we study two risk-averse stochastic unit commitment models with incomplete information: the first model being a chance-constrained unit commitment model and the second one a two-stage stochastic unit commitment model with recourse. Based on historical data on renewable energy, we construct a confidence set for the probability distribution of the renewable energy and propose data-driven stochastic unit commitment models to hedge against the incomplete nature of the information. Our models also ensure that, with a high probability, a large portion of renewable energy is utilized. Furthermore, we develop solution approaches to solve the models based on deriving strong valid inequalities and Benders’ decomposition algorithms. We show that the risk-averse behavior of both models decreases as more data samples are collected and eventually vanishes as the sample size goes to infinity. Finally, our case studies verify the effectiveness of our proposed models and solution approaches.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2016.1167287 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:48:y:2016:i:9:p:838-854
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2016.1167287
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().