Analysis of tandem queues with finite buffer capacity
Kan Wu,
Yichi Shen and
Ning Zhao
IISE Transactions, 2017, vol. 49, issue 11, 1001-1013
Abstract:
Tandem queues with finite buffer capacity commonly exist in practical applications. By viewing a tandem queue as an integrated system, an innovative approach has been developed to analyze its performance through insight from Friedman's reduction method. In our approach, the starvation at the bottleneck caused by service time randomness is modeled by interruptions. Fundamental properties of tandem queues with finite buffer capacity are examined. Without the assumptions of phase-type distributions and stochastic independence, we show that, in general, the system service rate of a tandem queue with a finite buffer capacity is equal to or smaller than its bottleneck service rate, and virtual interruptions, which are the extra idle period at the bottleneck caused by the non-bottlenecks, depend on arrival rates. Hence, the system service rate is a function of arrival rates when the buffer capacity of a tandem queue is finite. Approximations for the mean queue time of a dual tandem queue are developed using the concept of virtual interruptions.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2017.1342055 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:11:p:1001-1013
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2017.1342055
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().