Demand fulfillment probability in a multi-item inventory system with limited historical data
Canan G. Corlu,
Bahar Biller and
Sridhar Tayur
IISE Transactions, 2017, vol. 49, issue 12, 1087-1100
Abstract:
In a budget-constrained multi-item inventory system with independent demands, we consider the case of unknown demand parameters that are estimated from limited amounts of historical demand data. In this situation, the probability of satisfying all item demands, as a measure of demand fulfillment, is a function of the finite-sample estimates of the unknown demand parameters; thus, the demand fulfillment probability is a random variable. First, we characterize the properties of an asymptotical approximation to the mean and variance of this random variable due to the use of limited data for demand parameter estimation. Second, we use the characterization of the variance of the demand fulfillment probability for quantifying the impact of demand parameter uncertainty on demand fulfillment via numerical experiments. Third, we propose an inventory optimization problem that minimizes the variance of the demand fulfillment probability due to demand parameter uncertainty subject to a budget constraint on the total inventory investment. Our numerical experiments demonstrate that, despite the availability of limited amounts of historical demand data, it is possible to manage inventory with significantly reduced variance in the demand fulfillment probability.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2017.1355125 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:12:p:1087-1100
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2017.1355125
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().