EconPapers    
Economics at your fingertips  
 

When wind travels through turbines: A new statistical approach for characterizing heterogeneous wake effects in multi-turbine wind farms

Mingdi You, Eunshin Byon, Jionghua (Judy) Jin and Giwhyun Lee

IISE Transactions, 2017, vol. 49, issue 1, 84-95

Abstract: Modern utility-scale wind farms consist of a large number of wind turbines. In order to improve the power generation efficiency of wind turbines, accurate quantification of power generation levels of multi-turbines is critical, in both wind farm design and operational controls. One challenging issue is that the power output levels of multiple wind turbines are different, due to complex interactions between turbines, known as wake effects. In general, upstream turbines in a wind farm absorb kinetic energy from wind. Therefore, downstream turbines tend to produce less power than upstream turbines. Moreover, depending on weather conditions, the power deficits of downstream turbines exhibit heterogeneous patterns. This study proposes a new statistical approach to characterize heterogeneous wake effects. The proposed approach decomposes the power outputs into the average pattern commonly exhibited by all turbines and the turbine-to-turbine variability caused by multi-turbine interactions. To capture the wake effects, turbine-specific regression parameters are modeled using a Gaussian Markov random field. A case study using actual wind farm data demonstrates the proposed approach's superior performance.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2016.1204489 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:1:p:84-95

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/0740817X.2016.1204489

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:49:y:2017:i:1:p:84-95