Maintenance optimization for a Markovian deteriorating system with population heterogeneity
Chiel van Oosterom,
Hao Peng and
Geert-Jan van Houtum
IISE Transactions, 2017, vol. 49, issue 1, 96-109
Abstract:
We develop a partially observable Markov decision process model to incorporate population heterogeneity when scheduling replacements for a deteriorating system. The single-component system deteriorates over a finite set of condition states according to a Markov chain. The population of spare components that is available for replacements is composed of multiple component types that cannot be distinguished by their exterior appearance but deteriorate according to different transition probability matrices. This situation may arise, for example, because of variations in the production process of components. We provide a set of conditions for which we characterize the structure of the optimal policy that minimizes the total expected discounted operating and replacement cost over an infinite horizon. In a numerical experiment, we benchmark the optimal policy against a heuristic policy that neglects population heterogeneity.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2016.1205239 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:1:p:96-109
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2016.1205239
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().