A sample gradient-based algorithm for a multiple-OR and PACU surgery scheduling problem
Miao Bai,
Robert H. Storer and
Gregory L. Tonkay
IISE Transactions, 2017, vol. 49, issue 4, 367-380
Abstract:
In this article, we study a surgery scheduling problem in multiple Operating Rooms (ORs) constrained by the Post-Anesthesia Care Unit (PACU) capacity within the block-booking framework. With surgery sequences predetermined in each OR, a Discrete-Event Dynamic System (DEDS) is devised for the problem. A DEDS-based stochastic optimization model is formulated in order to minimize the cost incurred from patient waiting time, OR idle time, OR blocking time, OR overtime, and PACU overtime. A sample gradient-based algorithm is proposed for the sample average approximation of our formulation. Numerical experiments suggest that the proposed method identifies near-optimal solutions and outperforms previous methods. We also show that considerable cost savings (11.8% on average) are possible in hospitals where PACU beds are a constraint.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2016.1237061 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:4:p:367-380
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2016.1237061
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().