Response time analysis of a live-cube compact storage system with two storage classes
Nima Zaerpour,
Yugang Yu and
René B. M. de Koster
IISE Transactions, 2017, vol. 49, issue 5, 461-480
Abstract:
We study a next generation of storage systems: live-cube compact storage systems. These systems are becoming increasingly popular, due to their small physical and environmental footprint paired with a large storage space. At each level of a live-cube system, multiple shuttles take care of the movement of unit loads in the x and y directions. When multiple empty locations are available, the shuttles can cooperate to create a virtual aisle for the retrieval of a desired unit load. A lift takes care of the movement across different levels in the z-direction. Two-class-based storage, in which high turnover unit loads are stored at storage locations closer to the Input/Output point, can result in a short response time. We study two-class-based storage for a live-cube system and derive closed-form formulas for the expected retrieval time. Although the system needs to be decomposed into several cases and sub-cases, we eventually obtain simple-to-use closed-form formulas to evaluate the performance of systems with any configuration and first zone boundary. Continuous-space closed-form formulas are shown to be very close to the results obtained for discrete-space live-cube systems. The numerical results show that two-class-based storage can reduce the average response time of a live-cube system by up to 55% compared with random storage for the instances tested.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2016.1273563 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:5:p:461-480
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2016.1273563
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().