Bayesian nonparametric modeling of heterogeneous time-to-event data with an unknown number of sub-populations
Mingyang Li,
Jiali Han and
Jian Liu
IISE Transactions, 2017, vol. 49, issue 5, 481-492
Abstract:
Time-to-event data are a broad class of data widely encountered at different stages of the product life cycle. In practice, time-to-event data often exhibit heterogeneity, due to a variety of design and manufacturing issues, such as material quality inhomogeneity, unverified design changes, and manufacturing defects. Existing time-to-event modeling approaches mainly ignore this heterogeneity or account for it by pre-determining a fixed number of sub-populations. However, neglecting heterogeneity hinders the modeling accuracy, whereas pre-determining the number of sub-populations is often subjective or unjustifiable. In this article, a Bayesian nonparametric model is proposed to model heterogeneous time-to-event data by assuming an unknown number of sub-populations and quantifying the influence of possible covariates. An estimation algorithm is further proposed to achieve the joint model estimation and selection and to deal with the non-conjugate priors. Case studies demonstrate the effectiveness of the proposed work.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2016.1234732 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:5:p:481-492
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2016.1234732
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().