EconPapers    
Economics at your fingertips  
 

A sparse partitioned-regression model for nonlinear system–environment interactions

Shuluo Ning, Eunshin Byon, Teresa Wu and Jing Li

IISE Transactions, 2017, vol. 49, issue 8, 814-826

Abstract: This article focuses on the modeling of nonlinear interactions between the design and operational variables of a system and the multivariate outside environment in predicting the system's performance. We propose a Sparse Partitioned-Regression (SPR) model that automatically searches for a partition of the environmental variables and fits a sparse regression within each subdivision of the partition, in order to fulfill an optimal criterion. Two optimal criteria are proposed, a penalized and a held-out criterion. We study the theoretical properties of SPR by deriving oracle inequalities to quantify the risks of the penalized and held-out criteria in both prediction and classification problems. An efficient recursive partition algorithm is developed for model estimation. Extensive simulation experiments are conducted to demonstrate the better performance of SPR compared with competing methods. Finally, we present an application of using building design and operational variables, outdoor environmental variables, and their interactions to predict energy consumption based on the Department of Energy's EnergyPlus data sets. SPR produces a high level of prediction accuracy. The result of the application also provides insights into the design, operation, and management of energy-efficient buildings.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2017.1299955 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:8:p:814-826

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2017.1299955

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:49:y:2017:i:8:p:814-826