EconPapers    
Economics at your fingertips  
 

Data analysis of step-stress accelerated life tests with heterogeneous group effects

Kangwon Seo and Rong Pan

IISE Transactions, 2017, vol. 49, issue 9, 885-898

Abstract: Step-Stress Accelerated Life Testing (SSALT) is a special type of experiment that tests a product′s lifetime with time-varying stress levels. Typical testing protocols deployed in SSALTs cannot implement complete randomization of experiments; instead, they often result in grouped structures of experimental units and, thus, correlated observations. In this article, we propose a Generalized Linear Mixed Model (GLMM) approach to take into account the random group effect in SSALT. Failure times are assumed to be exponentially distributed under any stress level. Two parameter estimation methods, Adaptive Gaussian Quadrature (AGQ) and Integrated Nested Laplace Approximation (INLA), are introduced. A simulation study is conducted to compare the proposed random effect model with the traditional model, which pools data groups together, and with the fixed effect model. We also compare AGQ and INLA with different priors for parameter estimation. Results show that the proposed model can validate the existence of group-to-group variation. Lastly, the GLMM model is applied to a real data and it shows that disregarding experimental protocols in SSALT may result in large bias in the estimation of the effect of stress variable.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2017.1312038 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:9:p:885-898

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2017.1312038

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:49:y:2017:i:9:p:885-898