Data analysis of step-stress accelerated life tests with heterogeneous group effects
Kangwon Seo and
Rong Pan
IISE Transactions, 2017, vol. 49, issue 9, 885-898
Abstract:
Step-Stress Accelerated Life Testing (SSALT) is a special type of experiment that tests a product′s lifetime with time-varying stress levels. Typical testing protocols deployed in SSALTs cannot implement complete randomization of experiments; instead, they often result in grouped structures of experimental units and, thus, correlated observations. In this article, we propose a Generalized Linear Mixed Model (GLMM) approach to take into account the random group effect in SSALT. Failure times are assumed to be exponentially distributed under any stress level. Two parameter estimation methods, Adaptive Gaussian Quadrature (AGQ) and Integrated Nested Laplace Approximation (INLA), are introduced. A simulation study is conducted to compare the proposed random effect model with the traditional model, which pools data groups together, and with the fixed effect model. We also compare AGQ and INLA with different priors for parameter estimation. Results show that the proposed model can validate the existence of group-to-group variation. Lastly, the GLMM model is applied to a real data and it shows that disregarding experimental protocols in SSALT may result in large bias in the estimation of the effect of stress variable.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2017.1312038 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:9:p:885-898
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2017.1312038
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().