Statistical degradation modeling and prognostics of multiple sensor signals via data fusion: A composite health index approach
Changyue Song and
Kaibo Liu
IISE Transactions, 2018, vol. 50, issue 10, 853-867
Abstract:
Nowadays multiple sensors are widely used to simultaneously monitor the degradation status of a unit. Because those sensor signals are often correlated and measure different characteristics of the same unit, effective fusion of such a diverse “gene pool” is an important step to better understanding the degradation process and producing a more accurate prediction of the remaining useful life. To address this issue, this article proposes a novel data fusion method that constructs a composite Health Index (HI) via the combination of multiple sensor signals for better characterizing the degradation process. In particular, we formulate the problem as indirect supervised learning and leverage the quantile regression to derive the optimal fusion coefficient. In this way, the prognostic performance of the proposed method is guaranteed. To the best of our knowledge, this is the first article that provides the theoretical analysis of the data fusion method for degradation modeling and prognostics. Simulation studies are conducted to evaluate the proposed method in different scenarios. A case study on the degradation of aircraft engines is also performed, which shows the superior performance of our method over existing HI-based methods.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2018.1440673 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:50:y:2018:i:10:p:853-867
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2018.1440673
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().