EconPapers    
Economics at your fingertips  
 

A cost-effective and reliable measurement strategy for 3D printed parts by integrating low- and high-resolution measurement systems

Kai Wang and Fugee Tsung

IISE Transactions, 2018, vol. 50, issue 10, 900-912

Abstract: Metrology data are crucial to quality control of three-dimensional (3D) printed parts. Low-cost measurement systems are often unreliable due to their low resolutions, whereas high-resolution measurement systems usually induce high measurement costs. To balance the measurement cost and accuracy, a new cost-effective and reliable measurement strategy is proposed in this article, which jointly uses two-resolution measurement systems. Specifically, only a small sample of base parts are measured by both the low- and high-resolution measurement systems in order to save costs. The measurement accuracy of most parts with only low-resolution metrology data is improved by effectively integrating high-resolution metrology data of the base parts. A Bayesian generative model parameterizes a part-independent bias and variance pattern of the low-resolution metrology data and facilitates a between-part data integration via an efficient Markov chain Monte Carlo sampling algorithm. This multi-part two-resolution metrology data integration highlights the novelty and contribution of this article compared with the existing one-part data integration methods in the literature. Finally, an intensive experimental study involving a laser scanner and a machine visual system has validated the effectiveness of our measurement strategy in acquisition of reliable metrology data of 3D printed parts.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2018.1455117 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:50:y:2018:i:10:p:900-912

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2018.1455117

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:50:y:2018:i:10:p:900-912