Integration of sparse singular vector decomposition and statistical process control for traffic monitoring and quality of service improvement in mission-critical communication networks
Kun Wang and
Jing Li
IISE Transactions, 2018, vol. 50, issue 12, 1104-1116
Abstract:
Mission-Critical Communication Networks (MCCNs) are wireless networks whose malfunction can cause significant problems. The nature of MCCNs puts an extremely high standard on the Quality of Service (QoS). QoS assurance starts from monitoring and change/anomaly detection of network packets data. This problem has been primarily studied by the research community of communication networks, in which the existing methods fall short for providing a privacy-preserving, minimum-disruption, global monitoring tool. Another relevant research area is Multivariate Statistical Process Control (MSPC), in which generic methods have been developed for monitoring high-dimensional data streams. These methods do not account for the special data distribution and correlation structure of packet streams. Nor are they efficient enough to suit real-time analytics in MCCNs. We propose a method called Sparse Singular Value Decomposition (SSVD)-MSPC. SSVD-MSPC addresses the aforementioned limitations and additionally provides key capabilities toward QoS improvement, including monitoring, fault identification, and fault characterization. Extensive case studies are conducted for MCCNs that experience faults of different magnitudes and various temporal shapes. SSVD-MSPC achieves good performance across the different settings in comparison with existing methods.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2018.1474300 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:50:y:2018:i:12:p:1104-1116
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2018.1474300
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().