EconPapers    
Economics at your fingertips  
 

Appointment scheduling and the effects of customer congestion on service

Zheng Zhang, Bjorn P. Berg, Brian T. Denton and Xiaolan Xie

IISE Transactions, 2019, vol. 51, issue 10, 1075-1090

Abstract: This article addresses an appointment scheduling problem in which the server responds to congestion of the service system. Using waiting time as a proxy for how far behind schedule the server is running, we characterize the congestion-induced behavior of the server as a function of a customer’s waiting time. Decision variables are the scheduled arrival times for a specific sequence of customers. The objective of our model is to minimize a weighted cost incurred for a customer’s waiting time, server overtime and server speedup in response to congestion. We provide alternative formulations of this problem as a Simulation Optimization (SO) model and a Stochastic Integer Programming (SIP) model, respectively. We show that the SIP model can solve moderate-sized instances exactly under certain assumptions about a server′s response to congestion. We further show that the SO model achieves near-optimal solutions for moderate-sized problems while also being able to scale up to much larger problem instances. We present theoretical results for both models and we carry out a series of experiments to illustrate the characteristics of the optimal schedules and to measure the importance of accounting for a server′s response to congestion when scheduling appointments using a case study for an outpatient clinic at a large medical center. Finally, we summarize the most important managerial insights obtained from this study.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2018.1562590 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:51:y:2019:i:10:p:1075-1090

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2018.1562590

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:51:y:2019:i:10:p:1075-1090