A generic framework for multisensor degradation modeling based on supervised classification and failure surface
Changyue Song,
Kaibo Liu and
Xi Zhang
IISE Transactions, 2019, vol. 51, issue 11, 1288-1302
Abstract:
In condition monitoring, multiple sensors are widely used to simultaneously collect measurements from the same unit to estimate the degradation status and predict the remaining useful life. In this article, we propose a generic framework for multisensor degradation modeling, which can be viewed as an extension of the degradation models from one-dimensional space to multi-dimensional space. Specifically, we model each sensor signal based on random-effect models and characterize failure events by a multi-dimensional failure surface, which is an extension of the conventional definition of the failure threshold for a single sensor signal. To overcome the challenges in estimating the failure surface, we transform the degradation modeling problem into a supervised classification problem, where a variety of classifiers can be incorporated to estimate the degradation status of the unit based on the underlying signal paths, i.e., the collected sensor signals after removing the noise. As a result, the proposed method gains great flexibility. It can also be used for sensor selection, can handle asynchronous sensor signals, and is easy to implement in practice. Simulation studies and a case study on the degradation of aircraft engines are conducted to evaluate the performance of the proposed framework in parameter estimation and prognosis.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2018.1555384 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:51:y:2019:i:11:p:1288-1302
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2018.1555384
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().