A newsvendor model with autocorrelated demand under a time-consistent dynamic CVaR measure
Ye Shi,
Layth C. Alwan,
Christopher Tang and
Xiaohang Yue
IISE Transactions, 2019, vol. 51, issue 6, 653-671
Abstract:
As a result of autocorrelation, static risk measures such as value at risk and Conditional Value at Risk (CVaR) are time inconsistent and can thus result in inconsistent decisions over time. In this article, we present a time-consistent dynamic CVaR measure and examine it in the context of a newsvendor problem with autocorrelated demand. Due to the concavity of our CVaR measure, the dynamic program formulation associated with our dynamic newsvendor problem is not immediately separable. However, by exploring certain properties of the dynamic CVaR measure and underlying profit function, our dynamic program can be transformed into a sequence of (single-period) risk-averse newsvendor problems that depend on the observed demand history. By examining the structure of the optimal order quantities, we find both intuitive and counterintuitive results. When demands are positively correlated, the optimal order quantity is monotonically increasing in the degree of risk aversion. However, when demands are negatively correlated and the underlying cost structure satisfies certain conditions, the optimal order quantity is no longer monotonically increasing in the degree of risk aversion. Instead, the optimal order quantity is a decreasing (increasing) function of the degree of risk aversion when it is below (above) a certain threshold. We also show that these results continue to hold when demands follow a general ARMA process, and when inventory carryover is considered.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2018.1539888 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:51:y:2019:i:6:p:653-671
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2018.1539888
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().