Robust and energy efficient trajectories for robots in a common workspace setting
Nina Sundström,
Oskar Wigström and
Bengt Lennartson
IISE Transactions, 2019, vol. 51, issue 7, 766-776
Abstract:
A method, incorporating robustness into trajectory planning, is proposed in this article. In the presence of delays, the suggested approach guarantees collision-free scenarios for robots with predefined paths and overlapping workspaces. Traditionally, only the time at which a robot can enter a common workspace is constrained so as to avoid collisions. If the shared zone becomes available later than planned, collisions can potentially occur if the robot is unable to stop before entering the shared space. In this work, a clearance point is introduced where the occupancy of the common workspace is evaluated. The velocity is constrained at this point such that, if necessary, the robot is able to stop at the boundary of the shared space. The closer to the boundary the evaluation is performed, the more restricted is the velocity. The problem formulation is stated in space assuming a predefined path, where robot dynamics and robust constraints are included. Multiple objectives corresponding to final time and energy consumption are considered. The impact on the system performance concerning the position and timing related to the clearance point is analyzed. An example is presented, where the optimal clearance point position is determined, based on the time at which the shared space is assumed to become available.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2018.1542543 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:51:y:2019:i:7:p:766-776
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2018.1542543
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().