EconPapers    
Economics at your fingertips  
 

Models and algorithms for throughput improvement problem of serial production lines via downtime reduction

Mengyi Zhang and Andrea Matta

IISE Transactions, 2020, vol. 52, issue 11, 1189-1203

Abstract: Throughput is one of the key performance indicators for manufacturing systems, and its improvement remains an interesting topic in both industrial and academic fields. One way to achieve improvement is to reduce the downtime of unreliable machines. Along this direction, it is natural to pose questions about the optimal allocation of improvement effort to a set of machines and failure modes. This article develops mixed-integer linear programming models to improve system throughput by reducing downtime in the case of multi-stage serial lines. The models take samples of processing time, uptime and downtime as input, generated from random distributions or collected from real system. To improve computational efficiency while guaranteeing the exact optimality of the solution, algorithms based on Benders Decomposition and discrete-event relationships of serial lines are proposed. Numerical cases show that the solution approach can significantly improve efficiency. The proposed modeling and algorithm is applied to throughput improvement of various systems, including a long line and a multi-failure system, and also to the downtime bottleneck detection problem. Comparison with state-of-the-art approaches shows the effectiveness of the approach. Supplementary materials are available for this article. Go to the publisher’s online edition of IISE Transactions.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2019.1700431 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:52:y:2020:i:11:p:1189-1203

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2019.1700431

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:52:y:2020:i:11:p:1189-1203